Multiple linear regression modeling for compositional data

نویسندگان

  • Huiwen Wang
  • Liying Shangguan
  • Junjie Wu
  • Rong Guan
چکیده

Compositional data, containing relative information, occur regularly inmany disciplines and practical situations. Multivariate statistics methods including regression analysis have been adopted to model compositional data, but the existing research is still scattered and fragmented. This paper contributes to modeling the linear regression relationship for compositional data as both dependent and independent variables. First, some product, are defined for compositional-data vectors. The regression models are then built by the original compositional data and transformed data, respectively, after the introduction of the Isometric Logratio Transformation (ilr). By theoretical inference, it turns out that the two models are equivalent in essence using the ordinary least squares (OLS) method. Two measures for testing goodness of fit, i.e., the observed squared correlation coefficient R and the cross validated squared correlation coefficient Q, are also proposed to evaluate the regression models. Besides, the estimated regression parameters are explained to indicate the notion of relative elasticity. An empirical analysis finally illustrates the usefulness of the multiple linear regression models for compositional-data variables. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective EOS Based Modeling Procedure for Minimum Miscibility Pressure in Miscible Gas Injection

The measurement of the minimum miscibility pressure (MMP) is one of the most important steps in the project design of miscible gas injection for which several experimental and modeling methods have been proposed. On the other hand, the standard procedure for compositional studies of miscible gas injection process is the regression of EOS to the conventional PVT tests. Moreover, this procedure d...

متن کامل

QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

The application of artificial neural network and multiple linear regression in modeling the volume of residual stand using environmental data and remote sensing

In order to manage the forests and optimal and sustainable utilization of the forest, it seems necessary to know the information on the volume of the residual stand. In this study, a systematic randomized inventory was carried out in 186 circular 10-acre plots in the educational and research forest of Darabkola, Sari, Golestan, Iran and the volume of each plot was obtained. In the next step, th...

متن کامل

Modeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation and multiple linear regression

In this study, the temperature in friction stir welding of duplex stainless steel has been investigated. At first, temperature estimation was modeled and estimated at different distances from the center of the stir zone by the multivariate Lagrangian function. Then, the linear extrapolation method and multiple linear regression method were used to estimate the temperature outside the range and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2013